GENERAL DESCRIPTION

ALD310704A/ALD310704 high precision monolithic quad P-Channel MOSFET arrays are matched at the factory using ALD's proven EPAD® CMOS technology. This device is available in a quad version and is a member of the EPAD® Matched Pair MOSFET Family. The ALD310704A/ALD310704 is a P-channel version of the popular ALD110804A/ALD110804 Precision Threshold device. Together, these two MOSFET series enable complementary precision N-Channel and P-Channel MOSFET array based circuits.

Intended for low voltage and low power small signal applications, the ALD310704A/ALD310704 features precision -0.40V Gate Threshold Voltage, which enables circuit designs with very low operating voltages such as < +1.0V power supplies where the circuits operate below the threshold voltage of the ALD310704A/ALD310704. This feature also enhances input/output signal operating ranges, especially in very low operating voltage environments. With these low threshold precision devices, a circuit with multiple cascading stages can be constructed to operate at extremely low supply or bias voltage levels. ALD310704A/ALD310704 also features high input impedance (2.5 x 10¹⁰ Ω) and high DC current gain (>10⁸).

ALD310704A/ALD310704 MOSFETs are designed for exceptional matching of device electrical characteristics. The Gate Threshold Voltage VGS(th) is set precisely at -0.40V +/-0.02V, featuring a typical offset voltage of only +/-0.001V (1mV). As these devices are on the same monolithic chip, they also exhibit excellent temperature tracking characteristics. They are versatile design components for a broad range of precision analog applications such as basic building blocks for current mirrors, matching circuits, current sources, differential amplifier input stages, transmission gates, and multiplexers. These devices also excel in limited operating voltage applications such as very low level precision voltage-clamps. In addition to matched pair electrical characteristics, each individual MOSFET exhibits individual well controlled manufacturing characteristics, enabling the user to depend on tight design limits from different production batches.

APPLICATIIONS

• 0.5% precision current mirrors and current sources
• Low Tempco (<= 50ppm/°C) current mirrors/sources
• Energy harvesting circuits
• Very low voltage analog and digital circuits
• Backup battery circuits & power failure detectors
• Precision low level voltage-clamps
• Low level zero-crossing detector
• Source followers and buffers
• Precision capacitive probes and sensor interfaces
• Precision charge detectors and charge integrators
• Discrete differential amplifier input stage
• Peak-detectors and level-shifters
• High-side switches and Sample-and-Hold switches
• precision current multipliers
• Discrete analog switches / multiplexers
• Discrete voltage comparators

FEATURES & BENEFITS

• Precision matched Gate Threshold Voltages
• Precision offset voltages (VOS):
 ALD310704A: 2mV max.
 ALD310704: 10mV max.
• Sub-threshold voltage operation
• Low min. operating voltage of less than 0.4V
• Ultra low min. operating current of less than 1nA
• Nano-power operation
• Wide dynamic operating current ranges
• Exponential operating current ranges
• Matched transconductance and output conductance
• Matched and tracked temperature characteristics
• Tight lot-to-lot parametric control
• Positive, zero, and negative VGS(th) tempco bias currents
• Low input capacitance
• Low input/output leakage currents

ORDERING INFORMATION (*"L" suffix denotes lead-free (RoHS))

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Operating Temperature Range *</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-Pin SOIC Package</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>16-Pin Plastic Dip Package</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>ALD310704A5CL</td>
<td>ALD310704APCL</td>
</tr>
<tr>
<td>ALD310704SCL</td>
<td>ALD310704PCL</td>
</tr>
</tbody>
</table>

*Contact factory for industrial temp. range or user-specified threshold voltage values.

©2017 Advanced Linear Devices, Inc., Vers. 1.1 www.aldinc.com
GENERAL DESCRIPTION (cont.)

These devices are built to offer minimum offset voltage and differential thermal response, and they can also be used for switching and amplifying applications in -0.40V to -8.0V (+/-0.20V to +/-4.0V) powered systems where low input bias current, low input capacitance, and fast switching speed are desired. These devices, exhibiting well controlled turn-off and sub-threshold characteristics, operate the same as standard enhancement mode P-Channel MOSFETs. However, the precision of the Gate Threshold Voltage enable two key additional characteristics, or operating features. First, the operating current level varies exponentially with gate bias voltage at or below the Gate Threshold Voltage (subthreshold region). Second, the circuit can be biased and operated in the subthreshold region with nA of bias current and nW of power dissipation.

For most general applications, connect the V+ pin to the most positive voltage and the V- and IC (internally-connected) pins to the most negative voltage in the system. All other pins must have voltages within these voltage limits at all times. Standard ESD protection facilities and procedures for static sensitive devices are required when handling these devices.

ABSOLUTE MAXIMUM RATINGS

- Drain-Source voltage, \(V_{DS} \): -8.0V
- Gate-Source voltage, \(V_{GS} \): -8.0V
- Operating Current: 80mA
- Power dissipation: 500mW
- Operating temperature range: SCL, PCL 0°C to +70°C
- Storage temperature range: -65°C to +150°C
- Lead temperature, 10 seconds: +260°C

CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

OPERATING ELECTRICAL CHARACTERISTICS

For \(V^+ = +5V \) \(V^- = GND \) \(TA = 25°C \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>ALD310704A</th>
<th>ALD310704</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Threshold Voltage</td>
<td>(V_{GS(th)})</td>
<td>-0.42 -0.40 -0.38</td>
<td>-0.42 -0.40 -0.38</td>
<td>V</td>
<td>(I_{DS} = -1 \mu A, V_{DS} = -0.1V)</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>(V_{OS})</td>
<td>1 2 2 10</td>
<td>mV</td>
<td>VGS(th)M1 - VGS(th)M2 or VGS(th)M3 - VGS(th)M4</td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Temperature</td>
<td>(TCV_{GS(th)})</td>
<td>-2 -2</td>
<td>mV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain Source On Current</td>
<td>(I_{DS(ON)})</td>
<td>-1.83 -1.83</td>
<td>mA</td>
<td>VGS = VDS = -5.0V</td>
<td></td>
</tr>
<tr>
<td>Transconductance Current(^a)</td>
<td>(G_{FS})</td>
<td>570 570</td>
<td>(\mu A/V)</td>
<td>VGS = VDS = -5.0V</td>
<td></td>
</tr>
<tr>
<td>Transconductance Mismatch</td>
<td>(\Delta G_{FS})</td>
<td>1 1</td>
<td>%</td>
<td>VGS = VDS = -5.0V</td>
<td></td>
</tr>
<tr>
<td>Output Conductance(^2)</td>
<td>(G_{OS})</td>
<td>48 48</td>
<td>(\mu A/V)</td>
<td>(V_{GS(th)} = -4.0V, V_{DS} = -5.0V)</td>
<td></td>
</tr>
<tr>
<td>Drain Source On Resistance</td>
<td>(R_{DS(ON)})</td>
<td>1.20 1.20</td>
<td>KΩ</td>
<td>(V_{GS} = -5.0V, V_{DS} = -0.1V)</td>
<td></td>
</tr>
<tr>
<td>Drain Source On Resistance Mismatch</td>
<td>(\Delta R_{DS(ON)})</td>
<td>1 1</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain Source Breakdown</td>
<td>BVDSX</td>
<td>-8.0 -8.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain Source Leakage Current(^1)</td>
<td>(I_{DS(OFF)})</td>
<td>400 400</td>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Leakage Current</td>
<td>(I_{GSS})</td>
<td>200 200</td>
<td>pA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance(^2)</td>
<td>(C_{ISS})</td>
<td>2.5 2.5</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
\(^1\) Consists of junction leakage currents
\(^2\) Sample tested parameters
TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT CHARACTERISTICS

FORWARD TRANSFER CHARACTERISTICS

LOW VOLTAGE OUTPUT CHARACTERISTICS

DRAIN SOURCE ON CURRENT vs.
GATE AND DRAIN SOURCE VOLTAGE

VGS = VGS(th) - 4V
V+ = 0V
V- = -5V
TA = +25°C

VGS = VGS(th) - 2V
V+ = 0V
V- = -5V
TA = +25°C

VGS = VGS(th) - 1V
V+ = 0V
V- = -5V
TA = +25°C

VGS = VGS(th) - 3V
V+ = 0V
V- = -5V
TA = +25°C

VGS = VGS(th) - 5V
V+ = 0V
V- = -5V
TA = +25°C
TYPICAL PERFORMANCE CHARACTERISTICS (cont.)

FORWARD TRANSFER CHARACTERISTICS
EXPANDED (SUBTHRESHOLD)

GATE THRESHOLD VOLTAGE vs. DRAIN SOURCE VOLTAGE

GATE THRESHOLD VOLTAGE vs. AMBIENT TEMPERATURE

GATE THRESHOLD VOLTAGE vs. VOLTAGE

GATE THRESHOLD VOLTAGE vs. DRAIN SOURCE VOLTAGE

V_{DS} = -5.0V
V_{S} = 0V
V_{-} = -5V
T_{A} = +25°C

V_{DS} = -5V
T_{A} = +25°C

V_{DS} = -0.1V
V_{+} = 0V
V_{-} = -5V

V_{DS} = -5V
V_{S} = 0V
V_{-} = -5V

V_{DS} = -0.1V
V_{+} = 0V
V_{-} = -5V

V_{DS} = -5V
V_{S} = 0V
V_{-} = -5V
TYPICAL APPLICATIONS

LOW VOLTAGE CURRENT SOURCE MIRROR

LOW VOLTAGE CURRENT SOURCE W/ GATE CONTROL

LOW VOLTAGE DIFFERENTIAL AMPLIFIER

0.5% PRECISION LOW VOLTAGE CURRENT SOURCE MULTIPLICATION

M1, M2: N-Channel MOSFET
M3, M4: P-Channel MOSFET

ISET = ISET
\[I_{\text{SOURCE}} = \frac{V_+ - V_t}{R_{\text{SET}}} \]

Digital Logic Control of Current Source

PMOS PAIR

NMOS PAIR

\[I_{\text{SOURCE}} = I_{\text{SET}} \times X \times Y \]
TYPICAL APPLICATIONS (cont.)

0.5% LOW VOLTAGE PRECISION CURRENT MIRRORS

$$I_{SOURCE} = I_{SET} = \frac{V^+ - V_t}{R_{SET}}$$

- **M1, M2**: N-Channel MOSFET
- **M3, M4**: P-Channel MOSFET

0.5% PRECISION LOW VOLTAGE CASCODE CURRENT SOURCES

$$IS* = 3 \cdot IS = 3 \left(\frac{V^+ - 2V_t}{R_{SET}} \right)$$

- **MPA1...MPA4**: ALD310704 P-Channel MOSFET (1st individual pkg)
- **MPB1...MPB4**: ALD310704 P-Channel MOSFET (2nd individual pkg)

0.5% PRECISION LOW TEMPCO CASCODE CURRENT SOURCES

$$IS* = 3 \cdot IS = 3 \left(\frac{V^+ - 2V_t}{R_{SET}} \right)$$

- **M1, M2, M3, M4**: N-Channel MOSFET

- **M1, M2, M3, M4**: P-Channel MOSFET

Temperature stable <= 50ppm/°C when $$I_{SET} = 57 \mu A$$.

Notes:

- **V+**: +1.0V to +5.0V
- **R_{SET}**: 1.5KΩ < R_{SET} < 5.0MΩ
- M1, M2, M3, M4: N-Channel MOSFET
- M3, M4: P-Channel MOSFET

Figure Descriptions:

1. **M1, M2**: N-Channel MOSFET
2. **M3, M4**: P-Channel MOSFET
3. **MPA1...MPA4**: ALD310704 P-Channel MOSFET (1st individual pkg)
4. **MPB1...MPB4**: ALD310704 P-Channel MOSFET (2nd individual pkg)
5. **V+**: Voltage at positive terminal
6. **R_{SET}**: Resistor for current setting
7. **I_{SET}**: Setting current
8. **I_{SOURCE}**: Source current
SOIC-16 PACKAGE DRAWING

16 Pin Plastic SOIC Package

SOIC-16 PACKAGE DRAWING

16 Pin Plastic SOIC Package

![SOIC-16 Package Diagram](image)

Table

<table>
<thead>
<tr>
<th>Dim</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>1.35</td>
<td>1.75</td>
</tr>
<tr>
<td>A₁</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td>b</td>
<td>0.35</td>
<td>0.45</td>
</tr>
<tr>
<td>C</td>
<td>0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>D-16</td>
<td>9.80</td>
<td>10.00</td>
</tr>
<tr>
<td>E</td>
<td>3.50</td>
<td>4.05</td>
</tr>
<tr>
<td>e</td>
<td>1.27 BSC</td>
<td>0.050 BSC</td>
</tr>
<tr>
<td>H</td>
<td>5.70</td>
<td>6.30</td>
</tr>
<tr>
<td>L</td>
<td>0.60</td>
<td>0.937</td>
</tr>
<tr>
<td>Ø</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>S</td>
<td>0.25</td>
<td>0.50</td>
</tr>
</tbody>
</table>

SOIC-16 PACKAGE DRAWING

**SOIC-16 PACKAGE DRA...
PDIP-16 PACKAGE DRAWING

16 Pin Plastic DIP Package

<table>
<thead>
<tr>
<th>Dim</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.81</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>5.08</td>
<td>0.20</td>
</tr>
<tr>
<td>A₁</td>
<td>0.38</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>0.050</td>
</tr>
<tr>
<td>A₂</td>
<td>1.27</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>2.03</td>
<td>0.080</td>
</tr>
<tr>
<td>b</td>
<td>0.89</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>1.65</td>
<td>0.065</td>
</tr>
<tr>
<td>b₁</td>
<td>0.38</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>0.020</td>
</tr>
<tr>
<td>c</td>
<td>0.20</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.012</td>
</tr>
<tr>
<td>D-16</td>
<td>18.93</td>
<td>0.745</td>
</tr>
<tr>
<td></td>
<td>21.33</td>
<td>0.840</td>
</tr>
<tr>
<td>E</td>
<td>5.59</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td>7.11</td>
<td>0.280</td>
</tr>
<tr>
<td>E₁</td>
<td>7.62</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>8.26</td>
<td>0.325</td>
</tr>
<tr>
<td>e</td>
<td>2.29</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>2.79</td>
<td>0.110</td>
</tr>
<tr>
<td>e₁</td>
<td>7.37</td>
<td>0.290</td>
</tr>
<tr>
<td></td>
<td>7.87</td>
<td>0.310</td>
</tr>
<tr>
<td>L</td>
<td>2.79</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>3.81</td>
<td>0.150</td>
</tr>
<tr>
<td>S-16</td>
<td>0.38</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>1.52</td>
<td>0.060</td>
</tr>
<tr>
<td>ø</td>
<td>0°</td>
<td>15°</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>15°</td>
</tr>
</tbody>
</table>