ALD555 Oscillation Circuit

Description

This is a basic oscillator circuit using a 555 type of timer. Initially circuit is configured as an astable multivibrator, with the oscillation frequency given by \(f = \frac{1}{1.4 \times R \times C_1} \). Initially, with voltage on Output (pin3) high, \(C_1 \) charges towards \(2/3 \) \(V^+ \). When \(C_1 \) voltage reaches that threshold level, the output driver on pin3 switches Output State and the Output Voltage is switched to a low level, discharging \(C_1 \) towards ground. When voltage on \(C_1 \) is discharged to \(1/3 \) \(V^+ \), it triggers the comparator inside pin2, which then switches state of the Output State again towards a high and starts the \(C_1 \) charging cycle again. Hence through the charging and discharging cycles, an oscillator circuit is implemented. Using CMOS versions of 555 timer circuits, a very wide frequency range at very low level of voltage spikes and power dissipation can be achieved. Selection of the value of \(R \) is limited by the input leakage specifications of the timer at pin2 and pin6. \(R \) resistor value is also limited by the leakage current at the capacitor \(C_1 \). \(C_1 \) usually have a range from \(10,000 \mu F \) down to 0. When \(C_1 \) is at 0 value, the timer circuit will oscillate without an external \(C_1 \), in which case the internal parasitic capacitor \(C_{1int} \) inside the 555 timer takes over.

Recommended Components

ALD555, ALD1502, \(\frac{1}{2} \) ALD2502, \(\frac{1}{4} \) ALD4501

Other Related Circuit Ideas

- Schematic no. osc_42001.0 Astable Mode Operation (Free Running Oscillator)
- Schematic no. osc_42002.0 RC Oscillation Circuit