Description

This circuit shows a basic diode-connected MOSFET connection driven by a constant current source. The drain terminal is shorted to the gate terminal. When connected in this manner, this circuit produces an output voltage V_o. The drain current I_{ds} that flows through the MOSFET increases exponentially with increases of V_o, with I_{ds} vs. V_o characteristics similar to that of a forward biased diode. Hence the term “diode-connected” configuration. This type of circuit is very useful to clamp or control the output to a certain voltage level and not allowing V_o to increase rapidly with current increase. When a constant current of 68µA is applied, the resultant output voltage tend to be temperature stable. This results in a voltage about 55mV above threshold voltage of the EPAD MOSFET. At other voltage or current levels, the tempco changes from positive to negative as a function of drain currents. By selecting and setting a constant current source level, a voltage output with a certain positive, zero or negative temperature coefficient can be maintained.

For full schematic diagram and notes, please register and login at aldinc.com