Micro-power Precision Normally-ON Power Switch

Description

This micro-power precision Normally-ON power switch is controlled by V\textsubscript{IN}. When V\textsubscript{IN} is at GND, the MOSFET (ALD1149xx) is in an ON-State, which generates a low impedance path across its V\textsubscript{DS}, D and S terminals (R\textsubscript{DS} = 5\text{K}Ω). R\textsubscript{DS} and the 44\text{M}Ω resistor form a resistor divider, which resulted in the voltage at the gate (G terminal) of the power PMOS to be at near GND potential. This voltage turns the power PMOS to ON-State. V\textsubscript{DD} is typically in the range of 2.0V to 5.0V. V\textsubscript{OUT} sources up to 0.9A of output current from V\textsubscript{DD}.

When power to the circuit that supplies V\textsubscript{IN} is lost or when V\textsubscript{IN} is in the high impedance open-circuit state, V\textsubscript{IN} is pulled down by the 1MΩ resistor to V\textsubscript{-}. If V\textsubscript{-} is negative, such as at –2V, V\textsubscript{IN} is pulled toward –2V, which turns off the ALD1149xx. The power PMOS gate voltage at G now charges to near V\textsubscript{DD} voltage and turns the power PMOS off as well. When V\textsubscript{-} is supplied by the same power supply as that used to power the V\textsubscript{IN} circuit, V\textsubscript{-} now defaults to V\textsubscript{-} = V\textsubscript{IN} = GND and the ALD1149xx is in the ON-State, leaving the power PMOS in the ON-State as well. Applying V\textsubscript{IN} = –2V would turn off the ALD1149xx and the power PMOS at near zero quiescent current for the entire circuit, as both MOSFET devices are essentially in the OFF-State. Current drain of the circuit results only from leakage currents of the ALD1149xx and the power PMOS. Precision switching voltage is the result of the circuit operation depending on the precision threshold voltage of the ALD1149xx.

For full schematic diagram and notes, please register and login at aldinc.com

©2010 Advanced Linear Devices, Inc. Information furnished by Advanced Linear Devices, Inc. (ALD) is believed to be accurate and reliable. However, ALD assumes no responsibility for the use of such information nor for any infringement of patent or rights of third parties that may result from its use. No license is granted implication or otherwise under any patent rights of ALD.